Semiregular Automorphisms of Cubic Vertex-Transitive Graphs and the Abelian Normal Quotient Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiregular Automorphisms of Cubic Vertex-Transitive Graphs and the Abelian Normal Quotient Method

We characterise connected cubic graphs admitting a vertex-transitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph. ∗This work was suppo...

متن کامل

Semiregular Automorphisms of Cubic Vertex Transitive Graphs

It is shown that for a connected cubic graph Γ , a vertex transitive group G ≤ AutΓ contains a large semiregular subgroup. This confirms a conjecture of Cameron and Sheehan (2001).

متن کامل

Semiregular Automorphisms of Cubic Vertex-transitive Graphs

We characterise connected cubic graphs admitting a vertextransitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph, settling [2, Problem ...

متن کامل

Semiregular automorphisms of vertex-transitive cubic graphs

An old conjecture of Marušič, Jordan and Klin asserts that any finite vertextransitive graph has a non-trivial semiregular automorphism. Marušič and Scapellato proved this for cubic graphs. For these graphs, we make a stronger conjecture, to the effect that there is a semiregular automorphism of order tending to infinity with n. We prove that there is one of order greater than 2.

متن کامل

Semiregular automorphisms of edge-transitive graphs

The polycirculant conjecture asserts that every vertex-transitive digraph has a semiregular automorphism, that is, a nontrivial automorphism whose cycles all have the same length. In this paper we investigate the existence of semiregular automorphisms of edge-transitive graphs. In particular, we show that any regular edge-transitive graph of valency three or four has a semiregular automorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2015

ISSN: 1077-8926

DOI: 10.37236/4842